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Optimal Measurements of Spin Direction
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The accuracy of a measurement of the spin direction of a spin-s particle is
characterized for arbitrary half-integral s. The disturbance caused by the
measurement is also characterized. The approach is based on that taken in several
previous papers concerning joint measurements of position and momentum. As
in those papers, a distinction is made between the errors of retrodiction and
prediction. Retrodictive and predictive error relationships are derived. The POVM
describing the outcome of a maximally accurate measurement process is
investigated. It is shown that if the measurement is retrodictively optimal, then
the distribution of measured values is given by the initial state SU(2) Q-function.
If the measurement is predictively optimal, then the distribution of measured
values is related to the final state SU(2) P-function. The general form of the
unitary evolution operator producing an optimal measurement is characterized.

1. INTRODUCTION

In a recent series of papers (Appleby, 1998a–c, 1999a, b) we analyzed
the concept of experimental accuracy as it applies to simultaneous measure-
ments of position and momentum (Arthurs and Kelly, 1965; Stenholm, 1992;
Peres, 1993; Raymer, 1994; Busch et al., 1995; Schroeck, 1996; Leonhardt,
1997; and references cited therein). The purpose of this paper is to give a
similar analysis for measurements of spin direction.

There have been a number of previous discussions of joint, imperfectly
accurate measurements of two (noncommuting) components of spin (Prugo-
večki, 1977; Schroeck 1982; Busch, 1986, 1987, 1988; Martens and de
Muynck, 1993; Kienzler, 1998). Measurements of spin direction—the kind
of measurement considered in this paper—have been discussed by Busch
and Schroeck (1989), Grabowski (1989), Peres (1993), and Busch et al (1995).
In the following we extend the work of these authors by giving an analysis
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of the measurement errors and of the conditions for a measurement process
to be optimal. In particular, we will show that a measurement is retrodictively
optimal if and only if the distribution of measured values is given by the
generalized Q-function (Radcliffe, 1971; Arecchi et al., 1972; Lieb, 1973;
Berezin, 1975; Perelomov, 1986, Várilly and Gracia-Bondı́a, 1989; Amiet
and Cibils, 1991) which is defined in terms of SU(2) coherent states. This
corresponds to an analogous property of joint measurements of position and
momentum derived by Ali and Prugovečki (1977) and proved under less
restrictive conditions in Appleby (1999a).

This result provides us with some further insight into the physical signifi-
cance of the SU(2) Q-function, It also has a bearing on the problem of state
reconstruction. Amiet and Weigert (1998, 1999a–c) and Weigert (1998, 1999)
have recently shown how, by making measurements of a single spin compo-
nent for sufficiently many differently oriented Stern–Gerlach apparatuses,
one can calculate the corresponding values of the SU(2) Q-function, and
thereby reconstruct the density matrix. The fact that a retrodictively optimal
measurement of spin direction has the Q-function as its distribution of mea-
sured values suggests an alternative approach to the problem of state recon-
struction: for it means that one can reconstruct the density matrix from the
statistics of a single run of measurements performed on a single apparatus.
The fact that measurements of spin direction whose outcome is described
the Q-function have this property of informational completeness has been
stressed by Busch and Schroeck (1989) (also see Busch, 1991; Busch et al,
1995; Schroeck, 199).

Retrodictively optimal joint measurements of position and momentum
(Ali and Prugovečki, 1977; Appleby, 1999a) give rise to the ordinary Husimi
or Q-function (Husimi, l940; Hillery et al., 1984; Lee, 1995; and references
cited therein), and so they also have the property of informational complete-
ness (Busch, 1991; Busch et al., 1995; Schroeck, 1996; Nakajima, 1999), at
least in principle. However, the practical usefulness of this fact is somewhat
restricted due to the amplification of statistical errors which occurs when
one attempts to perform the reconstruction starting from real experimental
data (Leonhardt and Paul, 1994a, b; Poyatos et al., 1996; Leonhardt, 1997;
Banaszek, 1999; Appleby, 1999c). No such difficulty arises in the case of
measurements of spin direction due to the fact that the state space is finite
dimensional.

We now outline the approach taken in the remainder of this paper. We
consider a system consisting of a single spin, with angular momentum operator
Ŝ satisfying the usual commutation relations [Ŝa, Ŝb] 5 i (3

c51 eabc Ŝc (with
units chosen such that " 5 1). We take it that Ŝ 2 5 s(s 1 1) for some
arbitrary, but fixed half-integer s.
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The components of Ŝ are noncommuting, so they cannot all be simultane-
ously measured with perfect precision. However, they can all be measured
with a less than perfect degree of accuracy. In order to do so one can use
the same kind of procedure which is employed in the Arthurs–Kelly process
(Arthurs and Kelly, 1965; Stenholm, 1992; Peres, 1993; Busch et al., 1995;
Schroeck, 1996; Leonhardt, 1997; Appleby, 1998b): that is, one can couple
the noncommuting observables of interest—the components of Ŝ—to another
set of “pointer” or “meter” observables which do commute and whose values
may therefore be simultaneously determined with arbitrary precision.

The question we then have to decide is how to choose the pointer
observables. The observables to be measured satisfy the constraint Ŝ 2 5
s(s 1 1), where s is fixed. Consequently, one might take the view that the
magnitude of the spin vector is already known and that all that needs to be
measured is its direction. This suggests that the pointer observables should
be taken to be the (commuting) components of a unit vector n̂ satisfying the
constraint n̂ 2 5 1. The direction of n̂ measures the direction of Ŝ. We will
refer to this as a type 1 measurement. Such measurements are discussed in
Sections 2–7.

There is another possibility: one could take the pointer observables to
be the three independent, commuting components of a vector m̂, no constraint
being placed on the squared modulus m̂2. The value of Ŝ1 (respectively Ŝ2,
Ŝ3) is measured by m̂1 (respectively m̂2, m̂3). We will refer to this as a type
2 measurement. Such measurements are discussed in Section 8.

We begin our analysis in Section 2, by characterizing the POVM (positive
operator valued measure) describing the outcome of an arbitrary type 1
measurement process.

In Section 3 we characterize the accuracy of and disturbance caused by
a type 1 measurement process. Our definitions are based on those given in
Appleby (1998a, c) for simultaneous measurements of position and momen-
tum. In particular, we are led to make a distinction between two different
kinds of accuracy, which we refer to as retrodictive and predictive.

After giving in Section 4 a brief summary of the relevant features of
the theory of SU(2) coherent states, we go on in Section 5 to describe
retrodictively optimal type 1 measurements. We establish a bound on the
retrodictive accuracy. We define a retrodictively optimal measurement to be a
measurement which (1) achieves the maximum possible degree of retrodictive
accuracy and (2) is isotropic (in a sense to be explained). We then show that
the necessary and sufficient condition for the measurement to be retrodictively
optimal is that the distribution of measured values be given by the initial
state SU(2) Q-function.

In Section 6 we establish a bound on the predictive accuracy of a type
1 measurement. We derive a necessary and sufficient condition for this bound
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to be achieved, in which case we say that the measurement is predictively
optimal. We show that the distribution of measured values is then related to
the final state SU(2) P-function.

In Section 7 we consider completely optimal type 1 measurement proc-
ess, i.e., processes that are both retrodictively and predictively optimal. We
give the general form of the unitary evolution operator describing such
a process.

Finally, in Section 8, we consider type 2 measurements. We define the
retrodictive and predictive errors of such measurements and establish bounds
which the errors must satisfy. We then show that in the limit as a type 2
measurement tends to optimality (retrodictive or predictive), it more and
more nearly approaches an optimal type 1 measurement (with the replacement
s21 m̂ → n̂ ). It follows that, insofar as the aim is to maximize the measurement
accuracy, type 2 measurements have no advantages.

2. TYPE 1 MEASUREMENTS: POVM

The purpose of this section is to characterize the positive operator
valued measure (POVM; Kraus, 1983; Peres, 1993, 1999; Busch et al., 1995;
Schroeck, 1996; and references cited therein) describing the outcome of an
arbitrary type 1 measurement.

We take a type 1 measurement to consist of a process in which the
system with (2s 1 1)-dimensional state space *sy is coupled to a measuring
apparatus, with state space *ap. The interaction commences at a time t 5 ti

when system 1 apparatus is in the product state .c ^ xap&, where .c& P *sy

is the initial state of the system and .xap& P *ap is the initial state of the
apparatus. It ends after a finite time interval at t 5 tf when system 1 apparatus
is in the state Û .c ^ xap&, where Û is the unitary evolution operator describing
the measurement interaction.

It should be stressed that this description is quite general. In particular,
we are not making an impulsive approximation. Nor are we assuming that
the interaction Hamiltonian is large in comparison with the Hamiltonians
describing the system and apparatus separately. The only substantive assump-
tion is the statement that system 1 apparatus is initially in a product state
(so that they are initially uncorrelated).

It should be noted that .c& is arbitrary, since the system might initially
be in any state P *sy. On the other hand, .xap& is fixed, since we assume
that initially the apparatus is always in the same “zeroed” or “ready” state.

As explained in Section 1, we take it that the result of the measurement
is specified by the recorded values of three commuting pointer observables
n̂ 5 (n̂1, n̂2, n̂3), satisfying the constraint (3

r51 n̂ 2
r 5 1 (so that there are only

two pointer degrees of freedom). However, a measuring instrument does not
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usually consist of some pointers and nothing else. We therefore allow for
the existence of N additional apparatus observables ĵ 5 (ĵ1, . . . , ĵN) which,
together with the components of n̂, constitute a complete commuting set.
The eigenkets .n, j& thus provide an orthonormal basis for *ap.

The operator Û specifies the final state of system 1 apparatus given
any initial state P *sy ^ *ap. However, we are only interested in initial
states of the very special form .c ^ xap&, where .xap& is fixed. In other words,
the operator Û provides us with much more information than we actually
need. It turns out that all the quantities which are relevant to the argument
of this paper can be expressed in terms of the operator T̂(n, j), defined by
(Kraus, 1983; Busch et al., 1995; Schroeck, 1996; Peres, 1999)

T̂ (n, j) 5 o
s

m1,m252s
(^m1. ^ ^n, j.)Û(.m2& ^ .xap&).m1&^m2. (1)

where .m& denotes the eigenket of Ŝ3 with eigenvalue m (in units such that
" 5 1). The operator T̂(n, j) is more convenient to work with because, unlike
Û, it only acts on the system state space *sy.

The significance of the operator T̂(n, j) is that it describes the change
in the state of the system which is caused by the measurement process (Kraus,
1983; Busch et al., 1995; Schroeck, 1996; Peres, 1999) (i.e., it describes the
operation induced by the measurement). In fact, suppose that the measurement
is nonselective (meaning that the final value of n is not recorded, so that
there is no “collapse”), and let r̂f be the reduced density matrix describing
the final state of the system. It is then readily verified that

r̂f 5 # dn dj T̂(n, j).c&^c.T̂ †(n, j) (2)

where dn denotes the usual measure on the unit 2-sphere: in terms of spherical
polars dn 5 sin u du df.

Let rval(n) be the probability density function describing the distribution
of measured values:

rval(n) 5 o
l

m52l
# dj .(^m. ^ ^n, j.)Û(.c& ^ .xap&).2 (3)

rval(n) can also be expressed in terms of the operators T̂(n, j). In fact, define
(Kraus, 1983; Busch et al., 1995; Schroeck, 1996; Peres, 1999)

Ê(n) 5 # dj T̂ †(n, j)T̂(n, j) (4)
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Then

rval(n) 5 ^c.Ê(n).c& (5)

We see from this that Ê(n) dn is the POVM describing the measurement
outcome. In particular,

Ê(n) $ 0

for all n and

# dn Ê(n) 5 1 (6)

Until now we have been assuming that the system is initially in a pure
state. If the system is initially in the mixed state with density matrix r̂i we
have, in place of Eqs. (2) and (5),

r̂f 5 # dn dj T̂(n, j)r̂iT̂ †(n, j) (7)

and

rval(n) 5 Tr(Ê(n)r̂i) (8)

Equation (7) gives the final state reduced density matrix for the system in
the case when the measurement is nonselective, so that the pointer position
is not recorded. Suppose, on the other hand, that the final pointer position
is recorded to be in the subset 5 of the unit 2-sphere. Then r̂f is given by

r̂f 5
1

p5
#

5

dn # dj T̂(n, j)r̂iT̂ †(n, j) (9)

where p5 is the probability of finding n P 5:

p5 5 #
5

dn rval(n)

3. TYPE 1 MEASUREMENTS: ACCURACY AND
DISTURBANCE

The purpose of this paper is to establish the form of the operators T̂(n, j)
and Ê(n) when the measurement is optimal. In order to give a precise definition
of what “optimal” means in this context, we first need to define a concept
of measurement accuracy, which is the problem addressed in this section.
We also discuss how to quantify the degree to which the system is disturbed
by the measurement process.
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The approach we take is based on the approach taken in Appleby (1998a,
c) to the problem of defining the accuracy of and disturbance caused by a
simultaneous measurement of position and momentum. We thus work in
terms of the Heisenberg picture.

Let Ŝi 5 Ŝ and n̂i 5 n̂ be the initial values of the Heisenberg spin and
pointer observables at the time ti, when the measurement interaction begins;
and let Ŝf 5 Û†SÛ and n̂f 5 Û†n̂Û be the final values of these observables
at the time tf, when the measurement interaction ends. Let 6sy , *sy be the
unit sphere in the system state space. We then define the retrodictive fidelity
hi by

hi 5 inf
.c&P6sy

(^c ^ xap.
1
2 (n̂f ? Ŝi 1 Ŝi ? n̂f).c ^ xap&) (10)

and the predictive fidelity hf by

hf 5 inf
.c&P6sy

(^c ^ xap.
1
2 (n̂f ? Ŝf 1 Ŝf ? n̂f). c ^ xap&)

5 inf
.c&P6sy

(^c ^ xap.n̂f ? Ŝf.c ^ xap&) (11)

(where we have used the fact that the components of n̂f and Ŝf commute).
It should be noted that the concept of fidelity employed here is somewhat
different from the concept of fidelity employed in discussions of cloning and
state estimation (hi and hf are defined in terms of scalar products of observ-
ables, rather than scalar products of states).

We also define the quantity hd by

hd 5 inf
.c&P6sy

(^c ^ xap.
1
2 (Ŝf ? Ŝi 1 Ŝi ? Ŝf).c ^ xap&) (12)

The intuitive basis for these definitions is most easily appreciated if one
thinks, temporarily, in classical terms. If interpreted classically, hi would
represent the minimum expected degree of alignment between the final pointer
direction and the initial direction of the spin vector. In other words, it would
quantify the retrodictive accuracy of the measurement. On the other hand,
hf would represent the minimum expected degree of alignment between the
final pointer direction and the final direction of the spin vector: it would
therefore provide a quantitative indication of the predictive accuracy. Lastly,
hd would quantify the extent to which the measurement disturbs the system
by changing the direction of the spin vector.

Of course, n̂f, Ŝi, Ŝf are in fact quantum mechanical observables, and
so the physical interpretation of hi, hf, and hd needs to be justified much
more carefully. Rather than proceeding directly, it will be convenient first to
relate these quantities to an alternative characterization of the measurement
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accuracy and disturbance. This will allow us to appeal to the arguments given
in Appleby (1998a, c) to justify our earlier characterization of the accuracy
of and disturbance caused by a simultaneous measurement of position and
momentum. It will also be helpful in Section 8 when we compare type 1 and
type 2 measurements.

In a type 1 measurement, the result of the measurement is a direction,
represented by the unit vector n. However, one could extract from this
information estimates of the initial and final values of the spin vector itself
by multiplying n by suitable constants: say zin as an estimate for Si, and zfn
as an estimate for Sf. The question then arises: what are the best choices for
these constants?

To answer this question, consider the quantities

sup
.c&P6sy

(^c ^ xap..zin̂f 2 Ŝi.2.c ^ xap&) 5 z2
i 2 2zihi 1 s(s 1 1)

and

sup
.c&P6sy

(^c ^ xap..zfn̂f 2 Ŝf.2.c ^ xap&) 5 z2
f 2 2zfhf 1 s(s 1 1)

These expressions are minimized if we choose ji 5 hi, zf 5 hf. We accordingly
define the maximal rms error of retrodiction

DeiS 5 1 sup
.c&P6sy

(^c ^ xap..hin̂f 2 Ŝi.2.c ^ xap&)2
1/2

5 (s 1 s2 2 h2
i )1/2

(13)

and the maximal rms error of prediction

DefS 5 1 sup
.c&P6sy

(^c ^ xap..hfn̂f 2 Ŝf.2.c ^ xap&)2
1/2

5 (s 1 s2 2 h2
f )1/2

(14)

We also define the maximal rms disturbance by

DdS 5 1 sup
.c&P6sy

(^c ^ xap..Ŝf 2 Ŝi.2.c ^ xap&)2
1/2

5 !2(s 1 s2 2 hd)1/2

(15)

Comparing these expressions with those given in Appleby (1998a, c), it can
be seen that DeiS plays the same role in relation to the kind of measurement
here considered as do the quantities Deix, Dei p in relation to joint measurements
of position and momentum, that DefS is the analogue of Defx, Def p, and that
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DdS is the analogue of Ddx, Dd p. A suitably modified version of the argument
given in Section 5 of Appleby (1998a) may then be used to show that DeiS
(and therefore hi) describes the retrodictive accuracy of the measurement,
that DefS (and therefore hf) describes the predictive accuracy, and that DdS (and
therefore hd) describes the degree of disturbance caused by the measurement.

Finally, we note that the quantities hi, hf, and hd can be expressed in
terms of the operators T̂(n, j) and Ê(n) defined earlier. In fact, comparing
Eqs. (1) and (4) with Eqs. (10)–(12), one finds

hf 5 inf
.c&P6sy

1# dn ^c.1
2 (Ê(n)n ? Ŝ 1 n ? ŜÊ(n)).c&2 (16)

hf 5 inf
.c&P6sy

1# dn dj^c.T̂ †(n, j)n ? ŜT̂(n, j).c&2 (17)

and

hd 5 inf
.c&P6sy

1# dn dj o
3

a51
^c. 1–2 (T̂ †(n, j)ŜaT̂(n, j)Ŝa

1 ŜaT̂ †(n, j)ŜaT̂(n, j)).c&2 (18)

4. SU(2) COHERENT STATES

The task we now face is to establish upper bounds on the fidelities hi,
hf (or, equivalently, lower bounds on the errors DeiS, Def S) and then to
establish the form of the operators T̂(n, j), Ê(n) for which these bounds are
achieved. The theory of SU(2) coherent states will play an important role in
the argument. In order to fix notation, we begin by summarizing the relevant
parts of this theory. For proofs of the statements made in this section see
Radcliffe (1971), Arecchi et al. (1972), Lieb (1973), Berezin (1975), Perelo-
mov (1986), Várilly and Gracia Bondı́a (1989), and Amiet and Cibils (1991).

For each unit vector n P R3 choose a vector un P R3 with the property

exp[2iun ? Ŝ]Ŝ3 exp[iun ? Ŝ] 5 n ? Ŝ

Define

.n, m& 5 exp[2iun ? Ŝ].m& (19)

where .m& is the normalized eigenvector of Ŝ3 with eigenvalue m. We then have

n ? Ŝ.n, m& 5 m.n, m& (20)
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and

2s 1 1
4p # dn .n, m&^n, m. 5 1

for all m.
We are especially interested in the states .n, s&. These are the minimum-

uncertainty states, for which (3
a51(DŜa)2 5 s. To denote them, we employ

the abbreviated notation

.n& 5 .n, s& (21)

The states .n& so defined P *sy and are eigenvectors of n ? Ŝ. They need to
be carefully distinguished from the states .n, j& which P *ap and are eigenvec-
tors of n̂.

Let Â be any operator acting on *sy. The covariant symbol corresponding
to Â is defined by

Acv(n) 5 ^n.Â|n&

The contravariant symbol corresponding to Â is defined to be the unique
function Acn for which

Â 5
2s 1 1

4p # dn Acn(n).n&^n.

and which satisfies

# dn P2s(n, n8)Acn(n8) 5 Acn(n)

where P2s(n, n8) is the projection kernel

P2s(n, n8) 5 o
2s

j50
o

j

m5j
Yjm(n)Y*jm(n8) 5 o

2s

j50

2j 1 1
4p

Pj(n ? n8) (22)

In these expressions the Yjm are spherical harmonics and the Pj are Leg-
endre polynomials.

It can be shown that, given any square-integrable function f,

Â 5
2s 1 1

4p # dn f (n).n&^n. (23)

if and only if

# dn8 P2s(n, n8) f (n8) 5 Acn(n) (24)

for almost all n.
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The covariant (respectively contravariant) symbol of an operator is often
referred to as the Q (respectively P) symbol of that operator. However,
we will find it more convenient to reserve this notation for the symbols
corresponding specifically to the density matrix, scaled by a factor
(2s 1 1)/(4p):

Q(n) 5
2s 1 1

4p
rcv(n) (25)

P(n) 5
2s 1 1

4p
rcn(n) (26)

With this rescaling the Q- and P-functions satisfy the normalization condition

# dn Q(n) 5 # dn P(n) 5 1

In particular, Q(n) is a probability density function. As we will see, it is in
fact the probability density function describing the outcome of a retrodictively
optimal type 1 measurement.

5. RETRODICTIVELY OPTIMAL TYPE 1 MEASUREMENTS

The purpose of this section is to investigate those processes which
maximize the retrodictive fidelity. We begin by establishing the following
bound on hi:

hi # s (27)

which, in view of Eq. (13), implies

DeiS $ !s (28)

We will refer to Inequality (28) as the retrodictive error relation. It can be
seen that it has the same form as the ordinary uncertainty relation, DS $
!s. It is the analogue, for the kind of measurement here considered, of the
inequality Deix Dei p $ 1/2 proved in Appleby (1998c) for joint measurements
of position and momentum (in units such that " 5 1).

In order to prove this result, we note that it follows from Eqs. (4) and
(16) that

(2s 1 1)hi # # dn dj Tr(n ? ŜT̂ †(n, j)T̂(n, j))

In view of Eqs. (4) and (6) we also have
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# dn dj Tr(T̂ †(n, j)T̂(n, j)) 5 (2s 1 1)

Consequently,

# dn dj Tr((hi 2 n ? Ŝ)T̂ †(n, j)T̂(n, j)) # 0 (29)

For each fixed n the kets .n, m& defined by Eq. (19) constitute an orthonormal
basis. We may therefore write

T̂(n, j) 5 o
s

m,m852s
Tmm8(n, j).n, m&^n, m8. (30)

for suitable coefficients Tmm8. Substituting this expression in Inequality
(29) gives

o
s

m,m852s1(hi 2 m8) # dn dj .Tmm8(n, j).22 # 0 (31)

Inequality (27) is now immediate.
We next show that the retrodictive fidelity achieves its maximum value

hi 5 s if and only if Ê(n) is of the form

Ê(n) 5
2s 1 1

4p
g(n).n&^n. (32)

for almost all n, where .n& is the state defined by Eq. (21), and where g is
any function satisfying

# dn8 P2s(n, n8)g(n8) 5 1 (33)

where P2s(n, n8) is the projection kernel defined by Eq. (22).
In fact, setting hi 5 s in Inequality (31) gives

o
s

m,m852s1(s 2 m8) # dn dj .Tmm8(n, j).22 # 0 (34)

from which it follows that the coefficients Tmm8 must be of the form

Tmm8(n, j) 5 12s 1 1
4p 2

1/2

dm8lgm(n, j)

for almost all n, j. Substituting this expression into Eq. (30) gives
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T̂(n, j) 5 12s 1 1
4p 2

1/2

.g(n, j)&^n. (35)

for almost all n, j, where

.g(n, j)& 5 o
s

m52s
gm(n, j).n, m&

Setting

g(n) 5 # dj,.g(n, j)&,2

and using Eq. (4), we deduce that Ê(n) is of the form specified by Eq. (32).
It follows from Eqs. (6), (23), and (24) and the fact that idcn(n) 5 1 that the
function g must satisfy Eq. (33). This proves that the condition represented
by Eqs. (32) and (33) is necessary.

Suppose, on the other hand, that Ê(n) is given by Eq. (32), with g
satisfying Eq. (33). Using Eqs. (16), (23), and (24) we deduce

hi 5 inf
.c&P6sy

12s 1 1
4p # dn sg(n).^n.c&.22 5 s

which shows that the condition is also sufficient.
The condition hi 5 s is not, by itself, enough to determine the distribution

of measured values. However, the requirement that the retrodictive fidelity
be maximized is not the only property which it is natural to require of a
measurement that is to count as optimal. It is also natural to require that the
measurement does not pick out any distinguished spatial directions. We
accordingly define an isotropic measurement to be one which has the property
that, if the initial system state density matrix takes the rotationally invari-
ant form

r̂i 5
1

2s 1 1

then the distribution of measured values is also rotationally invariant:

rval(n) 5
1

4p

for all n.
We define a retrodictively optimal type 1 measurement process to be

an isotropic process for which the retrodictive fidelity is maximal, hi 5 s.
It is then straightforward to verify that a type 1 measurement process is
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retrodictively optimal if and only if Ê(n) 5 (2s 1 1)/(4p).n&^n.. This is the
POVM which has previously been discussed by Busch and Schroeck (1989),
Grabowski (1989), Peres (1993), Busch et al, (1995), and Schroeck (1996).

We see from Eq. (8) that the measurement is retrodictively optimal if
and only if the distribution of measured values is given by

rval(n) 5 Qi(n)

for all n, where Qi is the Q-function corresponding to the initial system state
density matrix:

Qi(n) 5
2s 1 1

4p
^n.r̂i.n&

In terms of the operator T̂(n, j), the necessary and sufficient condition
for a type 1 measurement to be retrodictively optimal is that [see Eq. (35)]

T̂(n, j) 5 12s 1 1
4p 2

1/2

.g(n, j)&^n. (36)

where .g(n, j)& is any family of kets with the property

# dj ,.g(n, j)&,2 5 1 (37)

for all n.
We conclude this section by showing that for retrodictively optimal type

1 measurements, ^Ŝi& 5 (s 1 1)^n̂f &. In fact,

^c ^ xap.n̂f.c ^ xap& 5 # dn n^c.Ê(n).c&

5
2s 1 1

4p # dn n.^c.n&.2

5
1

s 1 1
^c ^ xap.Ŝi.c ^ xap&

where we have used the fact (Lieb, 1973) that (s 1 1)n is the contravariant
symbol corresponding to Ŝ.

6. PREDICTIVELY OPTIMAL TYPE 1 MEASUREMENTS

The purpose of this section is to characterize the form of the operator
T̂(n, j) and function rval(n) for processes which maximize the predictive
fidelity, hf. In the last section we showed that, for retrodictively optimal type
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1 measurements, rval coincides with the initial system state Q-function. In
this section we will show that if the measurement is predictively optimal,
then rval is related to the final system state P-function.

We begin by establishing an upper bound on hf. By a similar argument
to the one leading to Inequality (29) we find

# dn dj Tr((hf 2 n ? Ŝ)T̂(n, j)T̂ †(n, j)) # 0

which only differs from Inequality (29) in the replacement of hi by hf and
in the fact that the order of T̂(n, j) and T̂+(n, j) is reversed. The analysis
therefore proceeds in nearly the same way. Corresponding to Inequality (27),
we deduce

hf # s (38)

which, in view of Eq. (14), implies

Def S $ !s (39)

We will refer to Inequality (39) as the predictive error relation. It is the
analogue, for measurements of spin direction, of the inequality Def x Def p $
1/2 proved in Appleby (1998c) for joint measurements of position and momen-
tum (units chosen such that " 5 1).

We define a predictively optimal type 1 measurement to be one for
which the predictive fidelity is maximal, hf 5 s (unlike the case of retrodictive
optimality, we do not impose the requirement that the measurement also be
isotropic). By a similar argument to the one given in the last section we find,
corresponding to Eqs. (36) and (37), that the necessary and sufficient condition
for a type 1 measurement to be predictively optimal is that T̂(n, j) be of
the form

T̂(n, j) 5 12s 1 1
4p 2

1/2

.n&^h(n, j). (40)

for almost all n, j, where .h(n, j)& is any family of kets satisfying the
completeness relation

2s 1 1
4p # dn dj .h(n, j)&^h(n, j). 5 1 (41)

If T̂(n, j) is of this form, it follows, from Eqs. (4) and (8) that

rval(n) 5
2s 1 1

4p # dj ^h(n, j).r̂i.h(n, j)& (42)

where r̂i is the initial system density matrix. Now suppose that the measured
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value of n has been recorded to lie in the region 5 of the unit 2-sphere.
Then, using Eqs. (9), (40), and (42), we find

r̂f 5
1

p5
#

5

dn rval(n).n&^n.

where p5 is the probability of recording the result n P 5, and where r̂f is
the final system reduced density matrix. In view of Eqs. (23), (24), and (26)
this means that the final system state P-function Pf is given by

Pf (n) 5
1

p5
#

5

dn8 P2s(n, n8)rval(n8)

for almost all n, where P2s is the projection kernel defined by Eq. (22).
If 5 is a sufficiently small region surrounding the point n0, then

r̂f ' .n0&^n0.

Finally, we note that for a predictively optimal type 1 measurement,
^Ŝf& 5 s^n̂f&. In fact,

^c ^ xap.Ŝf.c ^ xap& 5 # dn dj ^c.T̂ †(n, j)ŜT̂(n, j).c&

5
2s 1 1

4p # dn dj ^n.Ŝ.n&^c.h(n, j)&^h(n, j).c&

5 s # dn n^c.Ê(n).c&

5 s^c ^ xap.n̂f.c ^ xap&

where we have used the fact (Lieb, 1973) that sn is the covariant symbol
corresponding to Ŝ.

7. COMPLETELY OPTIMAL TYPE 1 MEASUREMENTS

We define a completely optimal type 1 measurement to be one which
is both retrodictively and predictively optimal. Referring to Eqs. (36), (37),
(40), and (41), we see that the necessary and sufficient condition for this to
be true is that T̂(n, j) be of the form

T̂(n, j) 5 12s 1 1
4p 2

1/2

f (n, j).n&^n.

where f is any function with the property
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# dj . f (n, j).2 5 1

for all n.
Expressed in terms of the operator Û, the condition reads [see Eq. (1)]

(^m1. ^ ^n, j.)Û(.m2& ^ .xap&) 5 12s 1 1
4p 2

1/2

f (n, j)^m1.n&^n.m2&

It is straightforward to verify that there do exist unitary operators Û with
this property. It follows that completely optimal measurements are defined
mathematically. The question as to whether they are possible physically is,
of course, rather less straightforward.

Referring to Eq. (18), we see that, for a completely optimal measurement,
the quantity hd characterizing the extent to which the system is disturbed by
the measurement process is given by

hd 5 inf
.c&P6sy

12s 1 1
4p # dn

s
2

(^c.n&^n.n ? Ŝ.c& 1 ^c.n ? Ŝ.n&^n.c&)2 5 s2

(43)

where we have used the fact (Lieb, 1973) that sn is the covariant symbol
corresponding to Ŝ. In view of Eq. (15) it follows that

DdS 5 !2s

8. TYPE 2 MEASUREMENTS

In the preceding sections we have been concerned with type 1 measure-
ments, for which the pointer position is constrained to lie on the unit 2-
sphere. We now turn our attention to type 2 measurements. As explained in
the Introduction, these are measurements for which the outcome is represented
by the three independent commuting components of a vector m̂, no constraint
being placed on the squared modulus m̂2 5 (3

a51 m̂2
a. We will show that the

more nearly a type 2 measurement approaches optimality, the more nearly
it approximates an (optimal) type 1 measurement.

We first need to characterize the accuracy of a type 2 measurement. A
similar analysis to that given in Section 2 can be carried through for type 2
measurements, with the replacement n → m. As before, we denote the
additional apparatus degrees of freedom ĵ 5 (ĵ1, . . . , ĵN), so that the eigenkets
.m, j& comprise an orthonormal basis for the apparatus state space *ap. Let
.xap& be the intial apparatus state and let Û be the unitary operator describing
the evolution brought about by the measurement interaction. Then, if the
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initial system state is .c&, the final state of system 1 apparatus, immediately
after the measurement interaction has ended, will be given by Û.c ^ xap&.
Corresponding to Eqs. (1) and (4), we define

T̂(m, j) 5 o
s

m,m852s
(^m. ^ ^m, j.)Û(.m8& ^ .xap&).m&^m8.

and

Ê(m) 5 # dj T̂ †(m, j)T̂(m, j) (44)

Corresponding to Eqs. (13) and (14), we define the maximal rms errors of
retrodiction and prediction by

DeiS 5 1 sup
.c&P6sy

(^c ^ xap..m̂f 2 Ŝi.2.c ^ xap&)2
1/2

(45)

and

Def S 5 1 sup
.c&P6sy

(^c ^ xap..m̂f 2 Ŝf.2.c ^ xap&)2
1/2

(46)

where Ŝi 5 Ŝ, Ŝf 5 Û†ŜÛ, and m̂f 5 Û†ÛÛ. It can be seen that Eq. (45)
agrees with Eq. (13) if one replaces m̂f → hin̂f and that Eq. (46) agrees with
Eq. (14) if one replaces m̂f → hfn̂f.

In terms of the operators Ê(m) and T̂(m, j) we have

DeiS 5 1 sup
.c&P6sy

1# dm o
3

a51
^c.(ma 2 Ŝa)Ê(m)(ma 2 Ŝa).c&22

1/2

(47)

and

Def S 5 1 sup
.c&P6sys

1# dm dj ^c.T̂ †(m, j).m̂ 2 Ŝ |2T̂(m, j).c&22
1/2

(48)

We next show that, corresponding to Inequality (28), one has the retrodic-
tive error relationship for type 2 measurements

Def S $ !s (49)

and that, corresponding to Inequality (39), one has the predictive error rela-
tionship for type 2 measurements

Def S $ !s (50)

In fact, it follows from Eqs. (44), (47), and (48) that
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(2s 1 1)(DeiS)2 $ # dm dj Tr(.m 2 Ŝ |2T̂ †(m, j)T̂(m, j))

and

(2s 1 1)(Def S)2 $ # dm dj Tr(.m 2 Ŝ |2T̂(m, j)T̂ †(m, j))

Using the fact that

(2s 1 1) 5 # dm dj Tr(T̂ †(m, j)T̂(m, j))

we deduce

# dm dj Tr((.m 2 Ŝ |2 2 (DeiS)2)T̂ †(m, j)T̂(m, j)) # 0 (51)

and

# dm dj Tr((.m 2 Ŝ |2 2 (DefS)2)T̂(m, j)T̂ †(m, j)) # 0 (52)

Now make the expansion

T̂(m, j) 5 o
s

m,m852s
Tmm8(m, j).n, m&^n, m8.

where n 5 m/m and .n, m& is the state defined by Eq. (19). Using this
expansion, we see that Inequalities (51) and (52) become

o
s

m,m852s
# dm dj ((m 2 m8)2 1 (s2 2 m82) 1 (s (53)

2 (DeiS)2)).Tmm8(m, j).2 # 0

and

o
s

m,m852s
# dm dj ((m 2 m)2 1 (s2 2 m2) 1 (s (54)

2 (Def S)2)).Tmm8(m, j).2 # 0

Inequalities (49) and (50) are now immediate.
Setting DeiS 5 !s in Inequality (53) gives

o
s

m,m852s
# dm dj ((m 2 m8)2 1 (s2 2 m82)).Tmm8(m, j).2 # 0

which implies
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.Tmm8(m, j).2 5 gm(n, j) dm8s d(m 2 s)

for suitable functions gm. However, this is not possible, since the square root
of the d-function is not defined. It follows that the lower bound set by
Inequality (49) is not precisely achievable. Nor is the lower bound set by
Inequality (50).

It is, however, possible to approach the lower bounds set by Inequalities
(49) and (50) arbitrarily closely. It can be seen that as DeiS → !s (respectively,
Def S → !s), then T̂(m, j) and Ê(m) become more and more strongly concen-
trated on the surface m 5 s. In other words, the measurement more and more
nearly approaches a type 1 measurement of maximal retrodictive (respectively,
predictive) accuracy, with pointer observable n̂ 5 m̂/s.

9. CONCLUSION

There are a number of ways in which one might seek to develop the
results reported in this paper.

In the first place, although we showed that DdS 5 !2s for a completely
optimal type 1 measurement, we did not derive error-disturbance relationships
analogous to the inequalities Deix Dd p, Dei p Ddx, Def x Dd p, Def p Ddx $ 1/2
(in units such that " 5 1) proved in Appleby (1998c) for the case of a
simultaneous measurement of position and momentum. The general principles
of quantum mechanics indicate (Heisenberg 1927, 1930; Braginsky and Khal-
ili 1992) that relationships of this kind must also hold for measurements of
spin direction, at least on a qualitative level. However, it appears that the
problem of giving the relationships precise, numerical expression is not
entirely straightforward. The question requires further investigation.

In this paper we have considered measurements of spin direction. How-
ever, the problem of simultaneously measuring just two components of spin
(Prugovečki, 1977; Schroeck, 1982; Busch, 1986, 1987, 1988; Busch and
Schroeck, 1989; Martens and de Muynck, 1993; Kienzler, 1998) is also
important. It would be interesting to investigate the accuracy of measurements
such as this and to try to characterize the POVM (or POVMs, in the plural?)
describing the outcome when the measurement is optimal.

We have seen that SU(2) coherent states play an important role in the
description of optimal measurements of spin direction. Ali and Prugovečki
(1977) and Appleby (1999a) have shown that ordinary, Heisenberg–Weyl
coherent states play an analogous role in the description of optimal joint
measurements of position and momentum. It would be interesting to see if
it is generally true that every system of generalized coherent states is related
in this way to joint measurements of the generators of the corresponding
Lie group.
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There are some important questions of principle regarding measurements
of a single spin component (Wigner, 1952; Wheeler and Zurek, 1983; Busch
and Schroeck, 1989; Busch et al., 1995; Garraway and Stenholm, 1999). It
would be interesting to see if the approach to the problem of defining the
measurement accuracy described in this paper can be used to gain some
additional insight into these questions.

Finally, it is obviously important to investigate whether optimal or near-
optimal determinations of spin direction can be realized experimentally.
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